
MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF MECHATRONICS ENGINEERING

COURSE MATERIALS

MR 405 EMBEDDED SYSTEMS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence

in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research

in Engineering and Frontier Technology and to impart quality education to mould technically

competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants,

dedicated research scientists and intellectual leaders of the country who can spread the beams

of light and happiness among the poor and the underprivileged.

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

2

ABOUT DEPARTMENT

 Established in: 2013

 Course offered: B.Tech Mechatronics Engineering

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To develop professionally ethical and socially responsible Mechatronics engineers to serve the

humanity through quality professional education.

DEPARTMENT MISSION

1) The department is committed to impart the right blend of knowledge and quality education

to create professionally ethical and socially responsible graduates.

2) The department is committed to impart the awareness to meet the current challenges in

technology.

3) Establish state-of-the-art laboratories to promote practical knowledge of mechatronics to

meet the needs of the society

PROGRAMME EDUCATIONAL OBJECTIVES

I. Graduates shall have the ability to work in multidisciplinary environment with good

professional and commitment.

II. Graduates shall have the ability to solve the complex engineering problems by applying

electrical, mechanical, electronics and computer knowledge and engage in lifelong learning in their

profession.

III. Graduates shall have the ability to lead and contribute in a team with entrepreneur skills,

professional, social and ethical responsibilities.

IV. Graduates shall have ability to acquire scientific and engineering fundamentals necessary

for higher studies and research.

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

3

PROGRAM OUTCOME (PO’S)

Engineering Graduates will be able to:

PO 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO 3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO 4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO 7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

4

PO 9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO 11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME (PSO’S)

PSO 1: Design and develop Mechatronics systems to solve the complex engineering problem by

integrating electronics, mechanical and control systems.

PSO 2: Apply the engineering knowledge to conduct investigations of complex engineering

problem related to instrumentation, control, automation, robotics and provide solutions.

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

5

COURSE OUTCOME

After the completion of the course the student will be able to

CO 1 Acquire knowledge to design a embedded system

CO 2 Describe about the hardware and software components of embedded system

CO 3 Acquire knowledge on custom single purpose processor design and optimization

CO 4 Interpret about the general purpose processors

CO 5 Understand the concepts of common memory devices.

CO 6 Explain about various software development tools and RTOS

CO VS PO’S AND PSO’S MAPPING

CO PO1 PO

2

PO3 PO

4

PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS0

1

PSO

2

CO 1 3 - 2 2 - - - - - - - 3 3 2

CO 2 3 - 2 2 - - - - - - - 3 3 2

CO 3 3 - 2 2 - - - - - - - 3 3 2

CO 4 3 - 2 2 - - - - - - - 3 3 2

CO 5 3 - 2 2 - - - - - - - 3 3 2

CO 6 3 - 2 2 - - - - - - - 3 3 2

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

6

SYLLABUS

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

7

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

8

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

9

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

PAGE NO:

1 Define embedded system CO1 K1 14

2 Explain challenges and applications of embedded

system in detail

CO1 K2 15

3 Explain design process CO1 K2 16

4 Distinguish between requirements and

specifications

CO1 K4 24

5 Explain characteristics of embedded system in

detail and also mention its

application

CO1 K2 15

6 Explain system with an example CO1 K2 13

7 Explain various levels of abstraction of embedded

system

CO1 K2 16

MODULE II

1 Explain watching dog timer CO2 K2 41

2 Discuss about various forms of system memories

used in the embedded

processor

CO2 K2 42

3 Discuss about components of embedded system

hardware

CO2 K2 46

 4 Discuss embedded system on a chip CO2 K2 51

 5 Compare microprocessor and microcontroller CO2 K2 32

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

10

 6 Describe power source , clock oscillator and

clocking units

CO2 K2 40

7 Discuss

a) Embedded processor

b) DSP processor

CO2 K2 35

8 Discuss

a) media processor

b) ASSP

C) Multiprocessor using GPPS

CO2 K2 38

MODULE III

1 What is a processor? Explain the benefits of using

custom single purpose

processor

CO3 K2 56

2 Design a counter that counts 0,1,2,3,4,5,6 using JK

FF

CO3 K6 70

3 Write a short note on steps involved in design of a

combinational circuit using basic logic gates

CO3 K2 57

4 Explain CMOS implementation of some basic logic

gates

CO3 K2 58

5 Explain microprocessor CO3 K2 32

6 Explain digital signal processors CO3 K2 35

7 Explain multiplexer, decoder, adder, comparator,

ALU

CO3 K2 64

MODULE IV

1 Define operating systems CO4 K2 98

2 Compare Harvard and Princeton architecture CO4 K2 84

3 Discuss about instruction execution CO4 K2 87

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

11

4 Discuss about general purpose processor basic

architecture

CO4 K2 83

5 Discuss on a) registers b)input/output c)interrupts

d)program and data

memory space

CO4 K2 97

6 Discuss timers and counters CO4 K2 101

MODULE V

1 Explain Common memory devices CO5 K2 114

2 Write a short note on Memory selection CO5 K2 126

3 Explain Memory map CO5 K2 138

4 Explain Internal devices & I/O devices map CO5 K2 140

5 Describe Direct memory access CO5 K2 153

6 Explain Types of I/O devices CO5 K2 155

MODULE VI

1 Explain Real Time Operating System CO6 K2 163

2 Explain round robin with interrupt CO6 K2 190

3 Write a short note on host and target machine CO6 K2 171

4 Explain different debugging methods CO6 K2 180

5 Write a short note on linker and locator CO6 K2 175

6 Write a short note on function queue scheduling CO6 K2 199

MR 405 EMBEDDED SYSTEMS

Department of Mechatronics Engineering, NCERC, Pampady

12

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO TOPIC PAGE NO:

1. Programming concept in high level language 216

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

MR 405- EMBEDDED SYSTEMS

Module 5

Module 5 - Syllabus

MR 405 ES – Module 5 2

▰ Common memory devices – Memory selection – Memory map – Internal

devices & I/O devices map – Direct memory access -.Types of I/O devices

– Serial devices – Parallel port devices –

Sophisticated features – Timer and Counting devices – Advanced serial bus

& I/O – High speed Buses – Common types – Advanced Buses.

Memory Devices

MR 405 ES – Module 5 3

▰ ROM

▻ Masked ROM

▻ EPROM,E2PROM,OTP ROM

▻ FLASH

▰ RAM

▻ SRAM

▻ DRAM

Memory Devices

MR 405 ES – Module 5 4

▰ RAM

▻ EDO RAM – Extended Data Output RAM

▻ SD RAM -

▻ RD RAM

Memory Map

MR 405 ES – Module 5 5

Types of IO

MR 405 ES – Module 5 6

▰ Synchronous Serial Input

▰ Synchronous Serial Output

▰ Asynchronous Serial UART Input

▰ Asynchronous Serial UART Output

▰ Parallel Port One bit Input

▰ Parallel Port One bit Output

▰ Parallel Port Input

▰ Parallel Port Output

Synchronous Serial Input

MR 405 ES – Module 5 7

MR 405 ES – Module 5 8

▰ Synchronization means separation by a constant interval or phase

difference.

▰ If clock period equals T ,then each byte at the port is received at input in

period 8 T.

▰ The bytes are received at constant rates. Each byte at the input port

separates by 8 T and data transfer rate for the serial line bits is 1/T bps [1

bps = 1-bit per second].

▰ The sender. along with the serial bits, also sends the clock pulses SCLK

(serial clock) to the receiver port pin.

MR 405 ES – Module 5 9

▰ The serial data input and clock pulse-input are on same input line when the

clock pulses either encode or modulate serial data input bits suitably.

▰ The receiver detects clock pulses and receives data bits after decoding or

demodulating.

▰ When a separate SCLK input is sent, the receiver detects at the middle,

positive or negative edge of the clock pulses that indicate whether data-

input is I or 0 and saves the bits in 8-bit shift register.

MR 405 ES – Module 5 10

MOSI/ MISO

▰ Synchronous serial input is also called master output slave input (MOS1)

when the SCLK is sent from the sender to the receiver and slave is forced to

synchronize sent inputs from the master as per the master clock inputs.

▰ Synchronous serial input is also called master input slave output (MISO)

when the SCLK is sent to the sender (slave) from the receiver (master) and

the stave is forced to synchronize sending the inputs to master as per the

master clock's outputs.

MR 405 ES – Module 5 11

▰ Synchronous serial input is used for interprocessor transfers, audio inputs

and streaming data inputs.

Synchronous Serial Output

MR 405 ES – Module 5 12

Synchronous Serial Output

MR 405 ES – Module 5 13

▰ Each byte is in synchronization with a clock.

▰ The bytes are sent at constant rates

▰ If the clock period equals T, then the data transfer rate is 1/T bps.

▰ The sender sends either the clock pulses at SCLK pin or the serial data

output and clock pulse-input through same output line when the clock

pulses either suitably modulate or encode the serial output bits.

Synchronous Serial Input-Output

MR 405 ES – Module 5 14

▰ Each bit in each byte synchronizes with the clock input and output.

▰ The bytes are sent or received at constant rates .

▰ The I/O are on same IO line when the clock pulses suitably modulate or

encode the serial input and output, respectively.

▰ If the clock period equals T, then the data transfer rate is 1/ T bps.

▰ Synchronous serial input/outputs are also called master input slave output

(MISO) and muster output slave input (MOSI), respectively.

MR 405 ES – Module 5 15

MR 405 ES – Module 5 16

▰ They are used for interprocessor transfers and streaming data.

▰ The bits are read from or written on magnetic media such as a hard disk or

on optical media such as a CD by using devices with serial synchronous IO

ports.

MR 405 ES – Module 5 17

Asynchronous Serial Input

▰ Each RxD bit is received in each byte at fixed intervals but each received

byte is not in synchronization.

▰ The bytes can separate by variable intervals or phase differences.

▰ When a sender shifts after every clock period T, then a byte at the port is

received at input in period 10T or 11T.

▰ The time of 2 T is due to use of additional bits at the start and end of each

byte. An addition time of IT is taken when a P-bit is sent before the stop hit.

MR 405 ES – Module 5 18

Asynchronous Serial Input

MR 405 ES – Module 5 19

▰ The bit transfer rate (for the serial line bits) is (I/ T) baud per second but

different bytes may be received at varying intervals.

▰ The word 'Baud' is taken from a German word for raindrop.

▰ Bytes pour from the sender like raindrops at irregular intervals.

▰ The sender does not send the clock pulses along with the bits.

Asynchronous Serial Input

MR 405 ES – Module 5 20

▰ The receiver detects n bits at the intervals of T from the middle of the first

indicating bit.

▰ n = 0,1 …0 or I I, finds out whether the data-input is 1 or 0 and saves the

bits in an 8-bit shift register.

▰ The processing element at the port (peripheral) saves the byte at a port

register, from where the microprocessor reads the byte.

▰ Asynchronous serial input is also called UART input if the serial input is

according to the UART protocol .

▰ Asynchronous serial input is used for keypad and modem inputs.

Asynchronous Serial Output

MR 405 ES – Module 5 21

▰ Only difference in Output Pin TXD

Parallel Port

MR 405 ES – Module 5 22

▰ A parallel port can have one or multi bit input or output and can be bi-

directional IO

▻ One hit input, output and I0

▻ Eight or more hit input, output and I0

Half Duplex and Full Duplex

MR 405 ES – Module 5 23

▰ Half duplex means that at any point communication can only be one way

(input or output) on a bi-directional line.

▰ An example of half-duplex mode is Walki Talki communication.

▰ Full duplex means that the communication can he both ways

simultaneously.

▰ An example of the full duplex asynchronous mode of communication is

communication between the modem and computer through the 14) and RxD

lines

Serial Communication Device

MR 405 ES – Module 5 24

▰ Synchronous Communication

▰ Asynchronous Communication

▻ RS 232/RS485

Parallel Port

MR 405 ES – Module 5 25

Parallel Port Interface Switches & Keypad

MR 405 ES – Module 5 26

Parallel Port Interface Encoder

MR 405 ES – Module 5 27

MR 405 ES – Module 5 28

Parallel Port Interface Stepper Motor

MR 405 ES – Module 5 29

Parallel Port Interface LCD

MR 405 ES – Module 5 30

MR 405 ES – Module 5 31

MR 405 ES – Module 5 32

MR 405 ES – Module 5 33

CAN

▰ Serial communication

▰ Multi-Master Protocol

▰ Compact

▻ Twisted Pair Bus line

▰ 1 Megabit per second

MR 405 ES – Module 5 34

▻ Controller Area Networks are used in many different fields,

the bulk of which are

▻ Auto-motive industry

▻ Factory Automation

▻ Machine Control

▻ Medical Equipment and devices

▻ And more….

MR 405 ES – Module 5 35

MR 405 ES – Module 5 36

MR 405 ES – Module 5 37

Analog pins 4 (SCL) and 5 (SDA) must be pulled

up, and a common ground is needed

MR 405 ES – Module 5 38

▰ Master initiates transfer with a START bit (SDA from high to low while

SCL is high

▰ Slave address (7 or 10 bits, 7 is most common)

▰ Transfer type (1 bit: 0 to write, 1 to read)

▻ All ICs compare address to their address

▻ If address matches, device sends an ACKNOWLEDGE signal

▻ If address does not match, device waits until bus is released by

STOP condition

MR 405 ES – Module 5 39

▰ Once master receives ACKNOWLEDGE,

it then sends (writes) or receives (reads) data

▻ Receiver sends back ACKNOWLEDGE for each byte

received

▰ Master concludes the transfer with STOP bit

MR 405 ES – Module 5 40

High Level Data Link Control Protocol

▰ Bit Oriented Approach – Streams are rep by bits

▰ Simply views the frames as a collection of bits

▰ The synchronous Data Link protocol developed by IBM is an example for

bit oriented protocol

▰ SDLC are standardized by ISO as HDLC

▰ Main protocol for Data link layer

MR 405 ES – Module 5 41

▰ High-level Data Link Control (HDLC) is a group of communication

protocols of the data link layer for transmitting data between network points

or nodes.

▰ Since it is a data link protocol, data is organized into frames.

▰ A frame is transmitted via the network to the destination that verifies its

successful arrival.

▰ It is a bit - oriented protocol that is applicable for both point - to - point and

multipoint communications.

MR 405 ES – Module 5 42

Transfer Modes

▰ HDLC supports two types of transfer modes, normal response mode and

asynchronous balanced mode.

▰ Normal Response Mode (NRM) − Here, two types of stations are there, a

primary station that send commands and secondary station that can respond

to received commands. It is used for both point - to - point and multipoint

communications.

▰ Asynchronous Balanced Mode (ABM) − Here, the configuration is

balanced, i.e. each station can both send commands and respond to

commands. It is used for only point - to - point communications.

 44 405 ES – Module 5 MR

MR 405 ES – Module 5 45

MR 405 ES – Module 5 46

MR 405 ES – Module 5 47

▰ Payload − This carries the data from the network layer. Its length may vary

from one network to another.

▰ FCS − It is a 2 byte or 4 bytes frame check sequence for error detection.

The standard code used is CRC (cyclic redundancy code)

MR 405 ES – Module 5 48

▰ Flag − It is an 8-bit sequence that marks the beginning and the end of the

frame. The bit pattern of the flag is 01111110.

▰ Address − It contains the address of the receiver. If the frame is sent by the

primary station, it contains the address(es) of the secondary station(s). If it

is sent by the secondary station, it contains the address of the primary

station. The address field may be from 1 byte to several bytes.

▰ Control − It is 1 or 2 bytes containing flow and error control information.

Synchronous Peripheral Communication

▰ Synchronous – Full Duplex Serial device

▰ Pins – Slave select – MOSI- MISO- SCLK

▰ Separate registers for control – status – transmit & receive data

▰ At least one „master‟ and „slave‟ needed

MR 405 ES – Module 5 49

MR 405 ES – Module 5 50

▰ At least one „master‟ and „slave‟ needed

▰ Master controls:

▻ Unidirectional data line, MOSI

▻ Master Out, Slave In (data from the master to the slave)

▻ Shared clock line, SCK (synchronizes the data transfer)

▻ Slave select line(s), SS*

▻ Which slave to be addressed

▰ ceived by the slave, the slave clocks out a bit that is received by the master

MR 405 ES – Module 5 51

▰ Slave controls:

▻ Unidirectional data line, MISO

▻ Master In, Slave Out (data from slave to the master)

▻ Shared by slaves

▻ Non-selected slaves, “tri-state” their MISO outputs

▰ SPI is a „data exchange‟ protocol

▻ As a bit is clocked out of the master and received by the slave, the slave clocks

out a bit that is received by the master

MR 405 ES – Module 5 52

MR 405 ES – Module 5 53

USB

▰ Universal Serial Bus (USB) provides a serial bus standard for connecting

devices, usually to a computer, but it also is in use on other devices such as

set-top boxes, game consoles and PDAs.

• Four wires (+5V, Return, data twisted pair)

• Up to 5 m (16.4 ft) Longer connections use hubs or active extensions

MR 405 ES – Module 5 54

▰ Asynchronous: This is transmission at any time, with arbitrary

delay between transmission of any two successive data items.

▰ Synchronous: This is continuous transmission with no gaps between

transmission of successive data items.

▰ Isochronous: This is transmission at regular intervals with a fixed

gap between the transmission of successive data items.

MR 405 ES – Module 5 55

Features

▰ Fast

▰ Bi-directional

▰ Isochronous

▰ low-cost

▰ dynamically attachable serial interface

MR 405 ES – Module 5 56

▰ USB 1.0 specification introduced in 1994

▰ USB 2.0 specification finalized in 2001

▰ Became popular due to cost/benefit advantage

▻ Eg. IEEE 1394 – high bandwidth, high cost

▰ Three generations of USB

▰ USB 1.0

▰ USB 2.0

▰ USB 3.0

MR 405 ES – Module 5 57

Module 6 - Syllabus

▰ Development tools: Host and Target machines – linker / locators –

debugging techniques.

▰ S/W Architectures: Round robin-round robin with interrupt – function

queue scheduling- RTOS.

1

Host and Target machines

▰ During the development process, a host system is used before locating and

burning the codes in the target board.

▰ The target board hardware and software is later copied to get the final

embedded system, which will function exactly as the one tested and

debugged and finalized during the development process.

2

Using a Host System

▰ Host system is a PC or workstation or laptop.

▰ It has the following hardwares.

▻ High-performance processor with caches

▻ Large RAM memory

▻ ROM BIOS (read only memory basic input-output system)

▻ Very large memory on disk

▻ Keyboard , Mouse , Display monitor

▻ Network connection
3

405 ES – Module 6

▰ In a full-fledged computer. It has software tools and must include the

following:

▻ Programs development kit for a high-level language program or IDE

▻ Host processor compiler and cross- compiler

▻ Cross-Assembler

54

405 ES – Module 6

Program Development Tool Kit

▰ Program development tool kit or IDE has an editor.

▰ Editor is used for writing C codes or assembly or C++ or Java or Visual

C++ using (a)the keyboard of the host system (PC) for entering IDE with

the program.

▰ Using GUIs, it allows the entry,naddition, deletion, insert, appending

previous written lines or files, merging record and files at :the specific

positions.

65

MR 405 ES – Module 6

▰ A high-level language is machine-independent.

▰ It will have an expression like X = X + 23, or X = 2*Y+V*Z+ 19 and so on.

▰ When we use a high-level language C, a tool is needed for obtaining the

machine codes for a target system.

▰ The programmer writes the mnemonics or C program, using the editor.

▰ The mice and keyboard combinations of the host system (PC) or host

system are for entering the program codes. Each language needs a compiler.

76

Module 6 87

▰ 1. An interpreter does expression-by-expression (line-by-line) translation to

the machine-executable codes.

▰ 2. A compiler - convert high level to machine

▰ 3. An assembly language program has the mnemonics that are machine-

dependent.

▰ 4. A dissembler translates the object codes into the mnemonics form of

assembly language. It helps in understanding the previously made object

codes.

8

▰ 5. An assembler is a program that translates the assembly mnemonics into

the binary opcodes and instructions, that is, into an executable file, called

object file.

▰ A loader is a program that helps in this task by reallocating addresses before

loading the opcode and operands in the computer memory.

9

MR 405 ES – Module 6

Target System

1110

▰ A target system has a processor, ROM memory for ROM image of the

embedded software, RAM for stack, temporary variables and memory

buffers, peripherals and interfaces.

▰ A target system may possess the RS232 as well as 10/100-base Ethernet

connectivity or USB port for software test and debug.

▰ A target system differs from a final system.

11

Steps

▰ The codes of application software have to be written.

▰ These have to be embedded in flash.

▰ These have to be repeatedly written or modified and tested using diagnostic,

simulation and debugging tools and embedded till a final testing in an edit-

test-debug cycle shows it working according to specifications.

▰ The programmer later on simply copies it into the final system or product.

12

ES – Module 6 1413

Linking and Locating Software

▰ A linker links the compiled codes of application software.

▰ Linking is necessary because there are number of codes to be linked for the

final binary file.

▰ Example – delay function

▻ There are the standard codes to program a delay task for which there is a

reference in the assembly language program.

▻ The codes for the delay must link with the assembled codes.

▻ The delay code is sequential from a certain beginning address.

14

Linking and Locating Software

▰ Example – delay function

▻ The assembly software code is also sequential from a certain beginning

address.

▻ Both the codes are present at the distinct and the available addresses in the

system.

▻ A linker links these

15

▰ The linked file in binary for Trun on a computer is commonly known as

executable file or simply ‘exe’ file.

▰ After linking, there has to be reallocation of the sequences of placing the

codes before the actual placement of the codes in the memory.

▰ A program is loaded in a computer RAM.

▰ The loader program performs the task of reallocating the codes after

finding the physical memory addresses available at a given instant.

▰ The loader finds the appropriate start address.

16

Locator

▰ When the code embeds into ROM or flash, a system design process locates

these codes as a ROM image.

▰ The codes are permanently placed at the actually available addresses in

flash-ROM.

▰ In embedded systems, there is no separate program to keep track of the

available addresses at different times during the run as in a computer, In

embedded systems, therefore next step after linking is the use of a locator

for the program-codes and data in place-of the loader.

17

Types of Executable file

▰ Motorola S file

▰ Intel Hex file

18

Development & Debugging

▰ How platforms used during the design

▰ Programming and testing of target using host

▰ How hosts and other techniques can be used for debugging an embedded

systems.

19

Development Envirnment

20

Debugging

▰ A software debugging can be done by compiling and executing the code on

a PC

▰ The serial port on evaluation board is most important debugging tools.

▰ Another very important debugging tool is the break point.

▰ The simplest form of break point is for the user to specify an address at-

which the programs execution is to break

▰ When the PC reaches that address, control is returned to monitor program

and execution can be continued.

21

LEDs as debugging devices:

▰ LEDs can be entertaining a simple flashing, it can be used to show error

conditions, when the code enters certain routines or to show idle time

activity.

22

In Circuit Emulator

▰ When software tools are insufficient to debug the system, a specialized

hardware tool aids is known as microprocessor in-circuit emulator (ICE).

▰ ICE can help debug software in a working embedded system.

▰ It surrounds specialized microprocessor with additional logic that allows the

users to specify break points and examine & modify the CPU state.

▰ The CPU provides as much debugging functionality as a debugger within a

monitor program, but it does not take up any memory.

▰ ICE is specific to a microcontroller and expensive.

23

Logic Anlayser

▰ The logic analyzers records the values on the signals into an internal

memory and then displays the results on a display once the memory is full

of run is aborted.

▰ It captures thousands or even millions of samples of data on channels than

is possible with a conventional oscilloscope.

▰ Logic analyzer is an array of inexpensive oscilloscopes.

▰ The analyzer can sample many different signals simultaneously (tens to

hundreds) but can display only 0, 1, or changing values for each.

24

▰ All these logic analysis channels can be connected to the system to record

the activity on many signals simultaneously.

▰ A logic analyzer has two modes to acquire data (i) state (ii) timing modes.

These two modes represent different ways of sampling the values.

25

▰ The system's data signals are sampled at a latch within the logic analyzer.

▰ The latch is controlled by either the system clock or sampling clock

depends whether the analyzer is being used in state or timing mode.

▰ After the sampling is complete, an embedded microprocessor takes over

control the display of the data captured in the sample memory.

26

Architecture of Logic Analyser

27

Embedded Software Architecture

▰ Round Robin

▰ Round Robin with Interrupt

▰ Function queue scheduling

▰ RTOS

28

Round Robin

▰ Round robin is the simplest imaginable architecture.

▰ There is no interrupts

▰ The main loop simple checks each of the I/O devices in turn and service

any that need service.

▰ Simple Architecture- no interrupts and no shared data .

▰ Process are dispatched in FIFO manner , but a given limited amount of time

– Quantum

▰ Time Quantum / Time Slice – A small unit of Time (10 -100 ms)

29

30

405 ES – Module 6 3231

Advantage

▰ Simplest of all architecture

▰ No Interrupts

▰ No Shared Data

▰ No latency Concern

▰ No Tight response requirements

32

Drawbacks

▰ A sensor connected to the Arduino that urgently needs service must wait its

turn.

▰ Fragile. Only as strong as the weakest link. If a sensor breaks or something

else breaks, everything breaks.

▰ Response time has low stability in the event of changes to the code

33

Round Robin with Interrupts

34

▰ This Round Robin with Interrupts architecture is similar to the Round

Robin architecture, except it has interrupts.

▰ When an interrupt is triggered, the main program is put on hold and control

shifts to the interrupt service routine.

▰ Code that is inside the interrupt service routines has a higher priority than

the task code.

35

Drawbacks

▰ Shared data

▰ All interrupts could fire off concurrently

36

37

Advantages

▰ Greater control over the priority levels

▰ Flexible

▰ Fast response time to I/O signals

▰ Great for managing sensors that need to be read at prespecified time

intervals

38

Function Queue Scheduling

39

Advantage

▰ In the Function Queue Scheduling architecture, interrupt routines add

function pointers to a queue of function pointers.

▰ The main program calls the function pointers one at a time based on their

priority in the queue.

40

Drawbacks

▰ Shared data

▰ Low priority tasks might never execute

41

▰ Great control over priority

▰ Reduces the worst-case response for the high-priority task code

▰ Response time has good stability in the event of changes to the code

42

RTOs

▰ A real time operating system commonly known as RTOS , is a software

component that are rapidly switches between tasks giving the impression

that multiple programs are being executed at the same time on a single

processing core.

▰ The difference between an OS (Operating System) such as Windows or

Unix and an RTOS (Real Time Operating System) found in embedded

systems, is the response time to external events.

▰ Normal OS – soft realtime ; RTOS – Hard Realtime

43

▰ RTOS used priority to execute the process enters in the system. Low

priority tasks preempted to serve higher priority process.

▰ Example – traffic light

44

45

Components of RTOS

46

MR 405 ES – Module 6

▰ The Scheduler: This component of RTOS tells that in which order, the

tasks can be executed which is generally based on the priority.

▰ Symmetric Multiprocessing (SMP): It is a number of multiple different

tasks that can be handled by the RTOS so that parallel processing can be

done.

▰ Function Library: It is an important element of RTOS that acts as an

interface that helps you to connect kernel and application code. This

application allows you to send the requests to the Kernel using a function

library so that the application can give the desired results.

4847

▰ Memory Management: this element is needed in the system to allocate

memory to every program, which is the most important element of the

RTOS.

▰ Fast dispatch latency: It is an interval between the termination of the task

that can be identified by the OS and the actual time taken by the thread,

which is in the ready queue, that has started processing.

▰ User-defined data objects and classes: RTOS system makes use of

programming languages like C or C++, which should be organized

according to their operation.

48

Types of RTOS

▰ Hard Real Time

▰ Firm Real Time

▰ Soft Real Time

49

Hard Real Time

▰ In Hard RTOS, the deadline is handled very strictly which means that given

task must start executing on specified scheduled time, and must be

completed within the assigned time duration.

▰ Example: Medical critical care system, Aircraft systems, etc.

50

Firm Real Time

▰ These type of RTOS also need to follow the deadlines. However, missing a

deadline may not have big impact but could cause undesired affects, like a

huge reduction in quality of a product.

▰ Example: Various types of Multimedia applications.

51

Soft Real Time

▰ Soft Real time RTOS, accepts some delays by the Operating system. In this

type of RTOS, there is a deadline assigned for a specific job, but a delay for

a small amount of time is acceptable. So, deadlines are handled softly by

this type of RTOS.

▰ Example: Online Transaction system and Livestock price quotation System.

52

Characteristics of RTOS

▰ Deterministic

▰ Responsive

▰ Reliability

▰ User Control

53

Reference

▰ https://automaticaddison.com/round-robin-vs-function-queue-scheduling-

embedded-software-architecture/

▰ https://www.highintegritysystems.com/rtos/what-is-an-

rtos/#:~:text=A%20Real%20Time%20Operating%20System,on%20a%20si

ngle%20processing%20core.

▰ https://www.guru99.com/real-time-operating-system.html

54

https://automaticaddison.com/round-robin-vs-function-queue-scheduling-embedded-software-architecture/
https://www.highintegritysystems.com/rtos/what-is-an-rtos/#:~:text=A%20Real%20Time%20Operating%20System,on%20a%20single%20processing%20core

APPENDIX I

CONTENT BEYOND THE SYLLABUS

Programming concept in high level language

High-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that e

High level language is the next development in the evolution of computer languages. Examples

of some high-level languages are given below

 PROLOG (for “PROgramming LOGic”)

 FORTRAN (for ‘FORrmula TRANslation’)

 LISP (for “LISt Processing”)

 Pascal (named after the French scientist Blaise Pascal).

High-level languages are like English-like language, with less words also known as keywords

and fewer ambiguities. Each high level language will have its own syntax and keywords. The

meaning of the word syntax is grammar.

Now let us discuss about the disadvantages of high-level languages

 A high level language program can’t get executed directly. It requires some translator to

get it translated to machine language. There are two types of translators for high level

language programs. They are interpreter and compiler. In case of interpreter, prior

execution, each and every line will get translated and then executed. In case of compiler,

the whole program will get translated as a whole and will create an executable file. And

after that, as when required, the executable code will get executed. These translator

programs, specially compilers, are huge one and so are quite expensive.

 The machine language code generated by the compiler might not be as compact as

written straightaway in low-level language. Thus a program written in high-level

language usually takes longer time to execute.

Now we shall discuss about the advantages of high-level languages

 High-level language programs are easy to get developed. While coding if we do some

errors then we can easily locate those errors and if we miss then during compilation those

errors would get detected by the compiler. And the programmer will initiate respective

corrections to do needful accordingly.

 By a glance through the program it is easy to visualize the function of the program.

 The programmer may not remain aware about the architecture of the hardware. So people

with our hardware knowledge can also do high level language programming.

 The same high level language program works on any other computer, provided the

respective compiler is available for the target new architecture. So high-level languages

are portable.

 Productivity against high level language programming is enormously increased.

To conclude, high-level languages are almost always used nowadays except where very high-

speed execution is required.

KEIL C programming for timers, interrupts & serial communication.

Embedded C is the most popular programming language in the software field for developing

electronic gadgets. Each processor is associated with embedded software. Embedded C

Programming plays a major role in performing specific functions by the processor. In our day-to-

day life, we frequently use many electronic devices such as washing machines, mobile phones,

digital camera and so on will work based on microcontrollers that are programmed by embedded

C.

The C code written is more reliable, portable, and scalable; and in fact, much easier to understand.

The first and foremost tool is the embedded software that decides the operation of an embedded

system. Embedded C programming language is most frequently used for programming the

microcontrollers.

Embedded C Programming Tutorial (8051)

For writing the program the embedded designers must have sufficient knowledge on the hardware

of particular processors or controllers as the embedded C programming is a full hardware related

programming technique.

https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/
https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/

Earlier, many embedded applications were developed by using assembly level programming.

However, they did not provide portability to overcome this problem with the advent of various

high-level languages like C, COBOL, and Pascal. However, it was the C language that got

extensive acceptance for embedded systems application development, and it continues to do so.

https://www.elprocus.com/embedded-robotics-real-time-robotic-applications-on-embedded-systems/

